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SUMMARY
The modern methods of processing the geophysical data, such as Reverse Time Migration (RTM) and Full
Waveform Inversion (FWI) require solving series of forward problems where the main step is solution of
Systems of Linear Algebraic Equations (SLAE) of big size. For big sizes, it is time and memory
consuming problem.
In this paper, we present a parallel direct algorithm to solve boundary value problems for 3D Helmholtz
equation discretized with help of finite differences. The memory consumption has been resolved due to
Nested Dissection approach, low-rank approximation technique and HSS format. OpenMP parallelization
is based on standard BLAS and LAPACK functionality. For MPI parallelization, we propose a novel
algorithm that uses dynamical distribution of the elimination tree nodes across cluster nodes. Numerical
experiments show performance benefits of the proposed cluster algorithm compared to the not parallel
version and demonstrate significant memory advantages over direct solvers without low-rank
approximation.
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Introduction 

Reverse Time Migration (RTM) and Full Waveform Inversion (FWI) require solving series of 

forward problems where the main step is solution of Systems of Linear Algebraic Equations (SLAE) 

of big size which are time and memory consuming problems.  

In this paper, we present a parallel direct algorithm to solve boundary value problems for 3D 

Helmholtz equation discretized with help of finite differences. The memory consumption has been 

resolved due to Nested Dissection approach, low-rank approximation technique and HSS format. For 

MPI parallelization, we propose a novel algorithm that uses dynamical distribution of the elimination 

tree nodes across cluster nodes. Numerical experiments show performance benefits and demonstrate 

significant memory advantages of the proposed cluster algorithm over direct solvers without low-rank 

approximation. 

Method 

The equation under consideration is the Helmholtz equation  
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for displacement u in some parallelepipedal domain D. The domain is surrounded with Perfectly 

Matched Layers used to decrease wave reflection from outer boundaries. In (1),    is frequency, V – 

sound velocity, sr  –  source coordinate, f – source. To get a SLAE FAU   we approximate (1)  

using 27-point finite difference stencil on a parallelepipedal grid. We apply 
tLDL  factorization to the 

complex symmetric sparse coefficient matrix A  (Collino, 2001).  

To decrease the fill-in of L-factor we use the Nested Dissection Reordering approach. To get 

additional performance improvement and decrease memory consumptions we use low-rank 

approximation of the off-diagonal blocks of L-factor and compress the diagonal blocks by HSS 

technique (Xia, 2012). Low-rank approximation is performed by blocking modification of the cross 

approximation technique proposed by the author (Solovyev S, Tordeux S, 2015). Patterns of L-factor 

and low-rank/HSS compressed L-factor are presented in the Figure 1 with grey scale colouring - light 

grey blocks are sparse, the grey is lighter for smaller sparsity, and the black blocks are dense.   

                    
Figure 1 Left image: patterns of L-factor coloured using grey scale. Right image: some - subdiagonal 

blocks are low-rank approximated; diagonal blocks are presented in HSS format. 

 

During factorization process, sub-diagonal m-by-n-blocks of L-factor are approximated by products of 

m-by-r and r-by-n with some comparatively small value r. Necessity to compute low-rank 

approximations may look like some increase in computational costs. In fact,  the total computational 

time even decreases because low-rank matrices are used for computing the Schur complements.  

Due to low-rank approximation used in factorization, we obtain an approximation L
~

of L-factor.  The 

solution x~ of the system of linear equations bxLDL t ~~~
approximates the solution of initial system. 
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Approximation errors directly correlate with low-rank approximation errors. This correlation and the 

details of algorithms are described in the paper (Solovyev S, 2014). 

After applying the Nested Dissection reordering, the factorization process and L-factors are presented 

by binary elimination tree (see Figure 2). The elimination tree describes dependencies among nodes to 

be processed: any node can be processed only after completion of processing all its children nodes 

whereas the nodes at the same level can be processed concurrently. Columns of L-factor from 

different blocks of the same elimination tree level are independent and can be computed concurrently 

(see columns panels 9 and 10 in the Figure 2). On the other hand, the factorization process of the 

columns from some node cannot be started before completing factorization matrix columns from all 

children nodes. So, block 13 can be factorized after completing the factorization nodes 1,2,3,4,9,10.  

 
Figure 2 The pattern of L-factor in exact arithmetic (left image) and it elimination tree (right image). 

 

We distribute matrix columns across cluster nodes by the following way: one cluster node contains 

columns of an elimination sub-tree located below a red line; upper this line each Elimination tree 

Node (EtN) belongs one Cluster Node (CN) (Figure 2, right image). If some block does not fit cluster 

node RAM then this block is split in few parts. The pattern of L-factor becomes a bit modified (Figure 

3, left image) and the elimination tree becomes semi-binary, i.e. one node has either one or two 

children (Figure 3, right image).   

 
Figure 3 The patterns of L-factor adapted to the cluster version (left image) and the elimination tree 

(right image). 

 

The factorization process starts from bottom levels of elimination tree by factorizing sub-trees 

simultaneously on different cluster nodes without any MPI communications. The factorization of the 

elimination tree nodes (located upper red line) performs using MPI data received from their children 

nodes. These data are necessary to compute Schur complement via updating current matrix columns 

by the previous factorized data. At the end of factorization process, the distribution of L-factor across 

cluster nodes is similar to initial matrix A distribution. The mapping columns on cluster nodes can be 

predicted before the factorization process start because the number of non-zero elements in L-factor 

can be estimated just after reordering step.  
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Use of this cluster algorithm in the  low-rank multifrontal solver would not be optimal. The low-rank 

solver needs less memory, so it should be able to solve problems bigger than the direct solver. In this 

case, the mapping columns on the cluster nodes cannot be predicted, because the low-rank 

approximation is performed “on the fly” and we don’t know the size of compressed L-blocks in 

advance. Therefore, we propose the dynamical elimination tree nodes distribution, which will describe 

on special case.  

Let us have a cluster with 9 nodes and a SLAE which cannot be solved on this cluster by direct solver 

because of lack of memory. The first step is distributing EtNs between CNs (we suppose that each 

EtN will contain part of initial matrix and temporary data, size of them equal the non-compressed 

block of L-factor). Because of lack of memory, not all EtNs are distributed. In our example, each CN 

marked as “green” performs factorization of some EtN circle (marked as “black”) (Figure 4, left 

image).  

 
Figure 4 Data distribution across cluster nodes at the first step of factorization process (left image) 

and after the end step (right image). 

 

At the end of the first step all factorized data are compressed (low-rank approximation) and 

redistributed across CNs, so factorized data are collected on the some CNs, other CNs become free-

of-data.  At the second step, free-of-data CNs receive next EtNs to factorize, other CNs save 

factorized data and send necessary data to other nodes for updating (computing Schur complements).   

Therefore, while performing factorization process there are two types of cluster nodes: nodes that 

keep factors (factorized elimination tree nodes) in RAM and send them by request to nodes that 

perform factorization. As the factorization process goes on, the cluster nodes may change 

specialization - more clusters nodes save factorized data and less nodes perform factorization. Finally, 

all factorized data are distributed across the cluster nodes (marked as “yellow”), but some cluster 

nodes can be free-of-data (marked as “green”) (Figure 4, right image). Proposed scheme is memory 

effective and can solve problems if compressed L-factor fits total cluster RAM (CRAM).  

Numerical experiments 

In the first test, we compare performance of the cluster version of our algorithm with one-node 

version. Computational domain is a cub 251x251x251, number of unknowns is 16*10^6, internal low-

rank accuracy is 10^-6, number of OMP threads is 4, number computational nodes on cluster – 32. 

Direct solvers need about 800G to solve such problem, the proposed low-rank solver needs about 3 

times less – 240G. Table 1 shows parameters of computational resources and timing. The “Processor 

performance ratio” was estimated on the small tests and shows speedup of server processor against 

cluster one.  

The second test aimed at demonstrating performance and memory consumption on the large 

problems. We took inhomogeneous cluster with one 1000GB RAM node and four nodes with 96GB 

RAM . Operation system cash uses about 10% of all memory, so we have about 1250G free RAM. 

Each node has Intel(R) Xeon(R) CPU X5675 @ 3.07GHz  SSE4.2 with 12 threads. 

The computational domain is 12km*12km*6km, spatial discretization with step 30m, frequency 4Hz, 

velocity 2400m/s. size of PML is 600m (10 grid points) in each direction. Therefore, the grid is 

460x460x240=~50*10^6 grid points.  
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Any direct solvers require about 3 500G total free RAM to handle with such problem. Proposed low-

rank one uses about 860G RAM of cluster and spend about 14 hours to factorize data and about 3 min 

to inverse LDL^t factors with one right hand side. 

 

 Server, 

512G RAM 

Cluster NSK-30T, 

16G RAM 

Processor 

Intel(R) Xeon(R) 

E5-2690 v2 @ 3.00GHz 

AVX 

E5540  @ 2.53GHz 

SSE4.2 

Processor performance ratio x2.2 x1.0 

Factorization time 17 198 (x2.2) 7 715 (1x) 

Table 1 Comparison of one-node version with cluster one. 

Conclusions 

We have presented a parallel algorithm of the multifrontal low-rank sparse solver to solve 3D 

Helmholtz problem. Proposed algorithm targets on HPC systems with distributed memory (clusters) 

by using hybrid OpenMP and MPI parallelization. OpenMP parallelization based on standard BLAS 

and LAPACK functionality. MPI parallelization is performed by novel proposed algorithm, which is 

“key point” of the paper. It is based on dynamical distribution of the elimination tree nodes across 

cluster nodes. The numerical experiments show the performance benefits and memory advantages 

over direct solvers without low-rank approximation.    
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